15.12.2019      29      0
 

Зимнее бетонирование с применением нагревательных проводов


ВВЕДЕНИЕ

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40 °С. На практике зимнее бетонирование освоено до температуры минус 15 – 20 °С.

Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения Мп от 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4 – 6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6 – 12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования.

В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

Применение

Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.

Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:

  • не обеспечена достаточная теплоизоляция монолита и опалубки;
  • монолит слишком массивен, что затрудняет его равномерный прогрев;
  • низкая температура окружающего воздуха, при которой замерзает вода в растворе.

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

СНиП 3.03.01-87. Несущие и ограждающие конструкции.

СНиП 12-01-2004. Организация строительства.

СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования.

СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство.

Зимнее бетонирование с применением нагревательных проводов

ГОСТ Р 12.4.026-2001. ССБТ. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний.

ГОСТ 12.4.059-89. ССБТ. Строительство. Ограждения защитные инвентарные. Общие технические условия.

ГОСТ 23407-78. Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ. Технические условия.

ГОСТ Р 52085-2003. Опалубка. Общие технические условия.

Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера/ЦНИИОМТП Госстроя СССР. – М.: Стройиздат, 1982.

Рекомендации по электрообогреву монолитного бетона и железобетона нагревательными проводами/ЦНИИОМТП Госстроя СССР. – М., 1989.

Характеристики провода

Зимнее бетонирование с применением нагревательных проводов

Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением.Кабель ПНСВ обладает следующими техническими характеристиками:

  • Удельное сопротивление составляет 0,15 Ом/м;
  • Стабильная работа в температурном диапазоне от -60°C до 50°C;
  • На 1 кубометр бетона расходуется до 60 м провода;
  • Возможность применения до температур до -25°C;
  • Монтаж при температурах до -15°C.
Предлагаем ознакомиться:  Установка дымохода в бане через стену

Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.

4.3
Теплоизоляционные материалы

4.3.1 В качестве теплоизоляционных используют разнообразные материалы, наиболее применяемые из которых приведены в таблице 5. Коэффициенты теплопередачи определены при нормальной влажности, с пленочным покрытием. Коэффициенты теплопередачи показывают улучшение теплоизоляционных свойств материалов при уменьшении скорости ветра от 15 м/с.

Теплоизоляционные материалы

Коэффициент теплопередачи К, Вт/(м2∙°С), при скорости ветра, м/с

5

15

Пенопласт (ПХВ) толщиной 120 мм

0,3

0,4

0,5

Опилки сосновые толщиной 100 мм

0,7

0,8

0,9

Плиты минераловатные толщиной, мм:

60

0,9

1,1

1,2

50

1,0

1,3

1,4

Шлак толщиной слоя 150 мм

1,3

1,8

1,9

Доски деревянные толщиной, мм:

40

2,0

3,6

4,0

25

2,4

5,2

6,0

4.3.2 В качестве утеплителя для открытых бетонных поверхностей кроме приведенных в таблице 5 применяют также керамзит, перлит, совелитовые плиты, торфоплиты, камышит и другие теплоизоляционные материалы.

Для утепления щитов опалубки может быть применена заливная теплоизоляция на основе, например, пенополиуретана и фенопласта.

Эти же теплоизоляционные материалы используют для укрытия металлического каркаса опалубки и ребер, которые являются, как известно, «мостиками холода».

4.3.1 В качестве теплоизоляционных используют разнообразные материалы,
наиболее применяемые из которых приведены в таблице 5. Коэффициенты теплопередачи определены при нормальной
влажности, с пленочным покрытием. Коэффициенты теплопередачи показывают
улучшение теплоизоляционных свойств материалов при уменьшении скорости ветра от
15 м/с.

Из таблицы видно, что наиболее эффективным из приведенных
теплоизоляционных материалов следует считать плиты из пенопласта (ПХВ). Так,
коэффициент теплопередачи плиты из пенопласта толщиной 120 мм при отсутствии
ветра составляет К = 0,3 Вт/(м2∙°С) и является
наименьшим из приведенных в таблице 5.

Теплоизоляционные материалы

Коэффициент
теплопередачи К, Вт/(м2∙°С), при скорости ветра, м/с

5

15

Пенопласт (ПХВ) толщиной 120 мм

0,3

0,4

0,5

Опилки сосновые толщиной 100 мм

0,7

0,8

0,9

Плиты минераловатные толщиной, мм:

60

0,9

1,1

1,2

50

1,0

1,3

1,4

Шлак толщиной слоя 150 мм

1,3

1,8

1,9

Доски деревянные толщиной, мм:

40

2,0

3,6

4,0

25

2,4

5,2

6,0

4.3.2 В качестве утеплителя
для открытых бетонных поверхностей кроме приведенных в таблице 5 применяют также керамзит, перлит, совелитовые плиты,
торфоплиты, камышит и другие теплоизоляционные материалы.

Для утепления щитов опалубки может быть применена заливная
теплоизоляция на основе, например, пенополиуретана и фенопласта.

Эти же теплоизоляционные материалы используют для укрытия
металлического каркаса опалубки и ребер, которые являются, как известно,
«мостиками холода».

Технология прогрева и схема укладки

Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.

Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже 5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.

К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора.

Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:

  1. Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
  2. Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
  3. Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.
Предлагаем ознакомиться:  Сечение провода и автомат защиты

При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.

Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.

Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.

Зимнее бетонирование с применением нагревательных проводов

5.1До начала работ по укладке нагревательных проводов должны быть закончены, как правило, опалубочные и арматурные работы. В ряде случаев укладку нагревательных проводов целесообразно производить одновременно с арматурными и опалубочными работами.

В составе зимнего бетонирования выполняют следующие подготовительные и основные работы.

Выполняют подготовительные работы по организации рабочего места и оснащению его средствами труда и технологическим оборудованием, по созданию безопасных условий труда. Устраивают ограждение рабочего места, проводят сигнализацию и освещение. Устанавливают на ровной твердой площадке силовое оборудование и вдоль захватки – секции электроразводки. Подключают нагревательные провода к секциям электроразводки, а секции – к трансформатору.

Основные работы зимнего бетонирования (термообработка бетона) производятся после завершения бетоноукладочных работ. Открытые поверхности бетона укрывают гидроизоляционной пленкой, теплоизоляционным материалом и подают напряжение на нагревательные провода.

Термообработка бетона состоит из трех фаз: нагревание, изотермическое выдерживание при температуре нагрева и остывание. Режим термообработки определяется с учетом ограничений, изложенных в разделе 3.4.

Нагревание бетона может производиться, как правило, до 70°С, но не более 80°С, наиболее рациональной считается для применяемых бетонов на портландцементе температура нагревания 40-50°С.

Средняя скорость нагревания бетона составляет 4,0-5,0°С/ч.

Изотермическое выдерживание зависит от температуры нагрева бетона и определяется по графику набора прочности бетона из условия получения заданной в проекте прочности (см. раздел 5.13).

Скорость остывания бетона обычно принимают 2,0-3,0°С/ч.

5.3 Для обеспечения при данной температуре наружного воздуха и скорости ветра заданного режима термообработки железобетонной конструкции, характеризуемой модулем поверхности, классом бетона с известным расходом цемента, температурой уложенного в опалубку бетона, по параметрам имеющихся опалубки и утеплителя, проводов и силового оборудования определяют электрические параметры нагрева бетона: коэффициент теплопередачи, удельную мощность нагрева бетонной конструкции, линейную электрическую нагрузку, шаг и длину проводов.

5.4 Коэффициент теплопередачи Kопределяют по таблице 5 (в том числе с помощью линейной интерполяции или экстраполяции) или по формуле

αλ= 2,1 – 3,2 Вт/(м2·°С) – коэффициент передачи теплоты от опалубки излучением;

δi = 0,015 – 0,1 м- толщина слоя теплоизоляционного материала;

λi = 0,02 – 0,8 Вт/(м2·°С) – коэффициент теплопроводности теплоизоляционного материала;

при скорости ветра до 5 м/с αк = 20,0 Вт/ /(м2·°С),

при 10 м/с αк = 30,0 Вт/(м2·°С),

при 15 м/с αк = 43,0 Вт/(м2·°С).

Примеры расчета Кприведены в разделе 6.

Зимнее бетонирование с применением нагревательных проводов

5.5 Удельная мощность нагрева бетонной конструкции Руд определяется отношением общей мощности Рнагрева к нагреваемой площади бетонной конструкции. Определяется удельная мощность, необходимая для нагрева бетона до заданной температуры. Удельная мощность зависит от разности температуры нагревания бетона и наружного воздуха ∆Т, °С, массивности нагреваемой конструкции, характеризуемой модулем охлаждаемой поверхности Мп, от коэффициента теплопередачи Kи содержания цемента в бетонной смеси Ц.

Теоретически разность температуры нагревания бетона и наружного воздуха ∆Т, °С, может составлять от минус 40 до плюс 80, то есть 120°С; практически она составляет от минус 20 до плюс 50, то есть 70°С. Модуль охлаждаемой поверхности имеет практическое значение в диапазоне от 4 до 10 м-1; в этом диапазоне находятся типовые фундаментные плиты, колонны, полы, стены и перекрытия.

Коэффициент теплопередачи в зависимости от вида применяемых теплоизоляционных материалов, а также толщины и конструкций утеплителей, скорости ветра изменяется в широких пределах: от 0,2 до 6,0 Вт/(м2·°С); для утепленных щитов опалубки он не превышает 3,0 Вт/(м2·°С). Так как твердение бетона – процесс экзотермический, то чем больше цемента, тем меньше требуется электрическая мощность для нагрева бетона.

Так, при увеличении содержания цемента в зимней бетонной смеси в два раза (с 200 до 400 кг/м3) потребная удельная мощность нагревания сокращается при прочих равных условиях с 960 до 600 Вт/м2, то есть на 37 %. Зависимость удельной мощности нагрева бетона от рассмотренных параметров была установлена экспериментально и представлена в виде номограммы (рис. 1).

Предлагаем ознакомиться:  Максимально допустимая сила тока в медном кабеле: таблица мощности и сечений

Рисунок 1 – Номограмма для определения удельной мощности нагрева бетона

Примеры определения удельной мощности нагрева бетона по этой номограмме приведены в разделе 6.

5.6 Линейная электрическая нагрузка на провод рс диаметром стальной токонесущей жилы 0,6-3,0 мм уточняется экспериментально из интервала: для армированных конструкций 30-35 Вт/м, для неармированных 35-40 Вт/м. При линейной электрической нагрузке более 40 Вт/м температура провода превышает 100°С, что приводит к структурным нарушениям в бетоне и уменьшению его прочности. Кроме того, может быть нарушена электроизоляция провода и может произойти короткое замыкание на арматуру и закладные детали.

5.7 Шаг и длина проводов должны создать такую плотность их укладки, которая обеспечивает необходимую равномерность нагрева бетона в конструкции.

Шаг проводов bопределяют по формуле

Длина проводов в зависимости от линейной электрической нагрузки, диаметра проводов (токонесущей жилы) и рабочего напряжения может быть ориентировочно определена по номограмме рис. 2 и уточнена по форме и размерам конструкции.

Шаг проводов выбирается из интервала 50-150 мм. Для конструкций, контактирующих с грунтом, шаг может быть принят 150-200 мм. В стыках элементов, в подливках под колонны и оборудование, в местных заделках шаг проводов сокращают до 25-70 мм.

Длина проводов должна быть кратной высоте стен, колонн, фундаментов и ширине перекрытий.

Примеры определения шага и длины проводов приведены в разделе 6.

Рисунок 2 – Номограмма для определения длины нагревателей

Зимнее бетонирование с применением нагревательных проводов

5.8Нагревательные провода размещают, как правило, путем вертикальной навивки с помощью «рогатки» на арматурные стержни, рамы, каркас. Для горизонтальной навивки при бетонировании перекрытий требуется дополнительное крепление провода, чтобы не допустить его провисания при укладке бетона.

В зависимости от толщины бетона провод размещают в один или несколько рядов.

Схемы навивки нагревательных проводов в типовых конструкциях зданий (в стенах, в перекрытиях, в столбчатых фундаментах, в колоннах) показаны на рис. 3.

Нагревательный провод размещают, как правило, между арматурой и опалубкой, чтобы не сместить или не деформировать его при укладке бетона.

Провод рекомендуется также навивать предварительно на инвентарные шаблоны из деревянных брусков сечением 70´50 мм с пропилами или на шаблоны из стальных (полимерных) рамок.

После непрерывной навивки провода с инвентарного барабана через расчетное количество петель (оборотов) делают выводы провода. Навивка провода выполняется с натяжением не более 5 кгс. При перегибах провода на углах под провод укладывают прокладки из полимеров (рубероида, битуминизированной бумаги и т.п.) для дополнительной электроизоляции.

6 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТЕРМООБРАБОТКИ БЕТОНА В ТИПОВЫХ КОНСТРУКЦИЯХ ЗДАНИЙ

Ниже на примере определения параметров термообработки бетона в типовых конструкциях зданий (колонн, стен и перекрытий) излагается методика, которая может быть рекомендована для расчета режима термообработки бетона в конструкциях любой формы и размеров.

Расчетные параметры термообработки бетона, приведенные в таблицах, следует использовать как предварительные и приближенные. Для ответственных конструкций расчетные параметры подлежат уточнению по результатам лабораторных испытаний образцов зимнего бетонирования.

Расчет длины

Зимнее бетонирование с применением нагревательных проводов

Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.

В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.

При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.

Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.

Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность.


Adblock detector